

4回路入り汎用オペアンプ

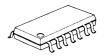
概要

NJM2060 は、NJM2058 の出力段に改良を加え、約 2 倍の高出力電流、スルーレート $4V/\mu s$, 利得帯域幅積 10MHz と、高性能化された 4 回路入り演算増幅器です。

NJM4560 と同特性を有しております。

特徴

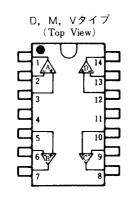
動作電源電圧 (±4.0~±18.0V) 低雑音 (RIAA 1.2µVrms typ.)


スルーレート (4V/µs typ.) 利得帯域幅積 (10MHz typ.) 高出力電流 (1o=25mA)

バイポーラ構造

外形 DIP14, DMP14, SSOP14

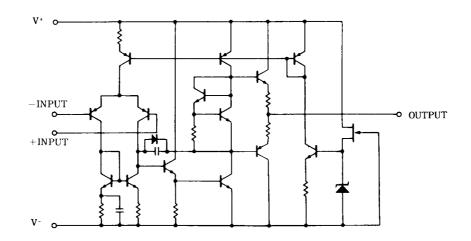
外 形


NJM2060D

NJM2060M

NJM2060V

端子配列



ピン配置

1. A OUTPUT
2. A – INPUT
3. A + INPUT
4. V + 11. V - 5. B + INPUT
6. B – INPUT
10. C + INPUT
11. V - 12. D + INPUT
13. D – INPUT
14. V - 13. D – INPUT

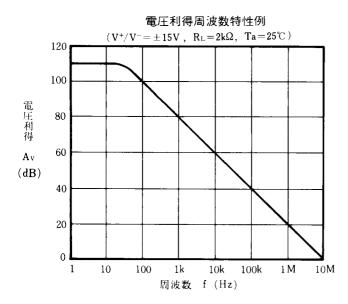
7. BOUTPUT 14. DOUTPUT

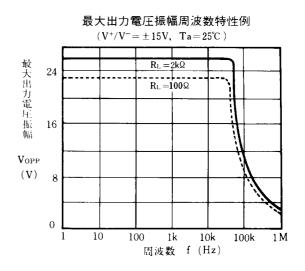
等価回路図 (下図の回路が4回路入っています)

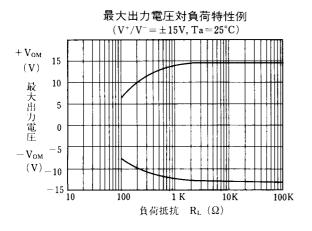
NJM2060

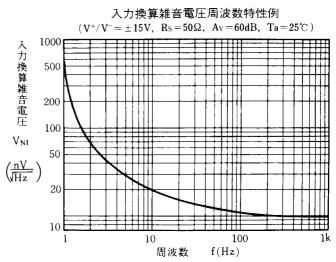
絶対最大定格 (Ta=25°C)

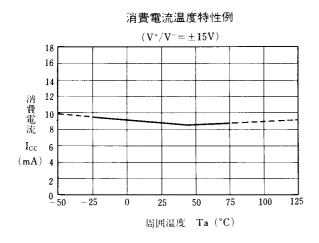
項目						記号	定格	単 位
電		源	電		圧	V+/V-	± 18	V
差	動	入	力	電	圧	V _{ID}	± 30	V
同	相	入	力	電	圧	V _{IC}	±15 (注1)	V
消		費	電		力	P_{D}	(Dタイプ)700 (Mタイプ)700 (注2) (Vタイプ)300	mW
動	作		温		度	T _{opr}	-20 ~ + 75	°C
保	存		温度		度	T _{stq}	-40 ~ +125	°C

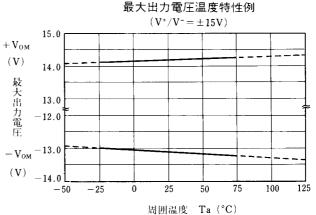

(注1)電源電圧が±15以下の場合は、電源電圧と等しくなります。

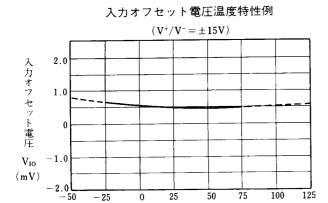

(注2)DMP(Mタイプ)消費電力は基板実装時とします。

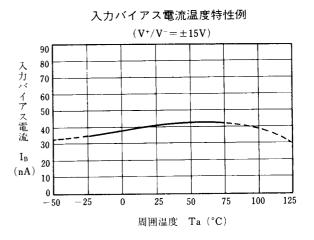

電気的特性 (V⁺/V⁻=± 15V, Ta=25°C)

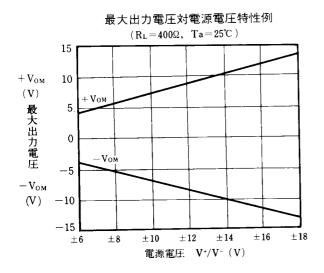

項目	記 号	条件	最 小	標準	最 大	単 位
入力オフセット電圧	V _{IO}	R_s 10k Ω	-	0.5	6	mV
入力オフセット電流	I 10		-	5	200	nA
入力バイアス電流	I _B		-	40	500	nA
入 力 抵 抗	R_{IN}		100	500	-	kΩ
電 圧 利 得	A_{V}	$R_L = 2k\Omega, V_0 = \pm 10V$	86	100	-	dB
最大出力電圧1	V _{om 1}	R_L 2k Ω	± 12	± 14	-	V
最大出力電圧2	V_{OM-2}	Io=25mA	± 10	± 11.5	-	V
同相入力電圧範囲	VICM		± 12	± 14	-	V
同相信号除去比	CMR	R _s 10kΩ	70	90	-	dB
電源電圧除去比	SVR	R _s 10kΩ	76	90	-	dB
消費電流	I _{cc}		-	9	14	mA
ス ル ー レ ー ト	SR		-	4	-	V/µs
利 得 帯 域 幅 積	GB		-	10	-	MHz
入力換算雑音電圧	V_{NI}	RIAA R _S =2.2k Ω ,30kHz L.P.F	-	1.2	-	µVrms

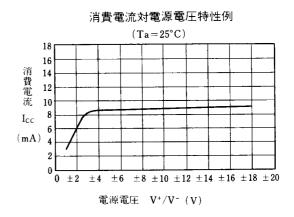

特性例



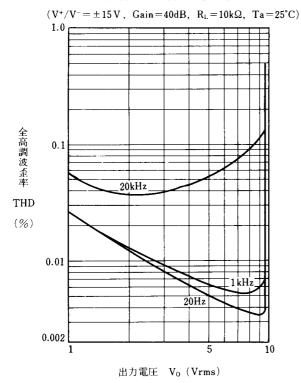


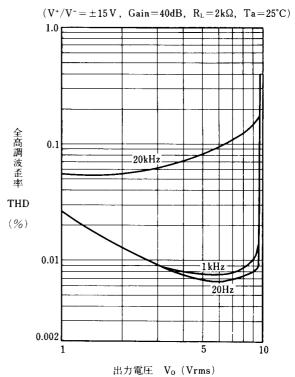





特性例

周囲温度 Ta(°C)





特性例

全高調波歪率対出力電圧特性例

全高調波歪率対出力電圧特性例

このデータブックの掲載が容の正確さには 万全を期しておりますが、掲載が容について 何らかの活かな保証を行うものではありません。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しないことを保証するものでもありません。