

C4D02120ASilicon Carbide Schottky Diode

Z-Rec® Rectifier

 $V_{RRM} = 1200 V$ $I_{F} (T_{c}=135^{\circ}C) = 6 A$ $Q_{c} = 12 nC$

Features

- 1.2kV Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching
- Extremely Fast Switching

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Motor Drives

Package

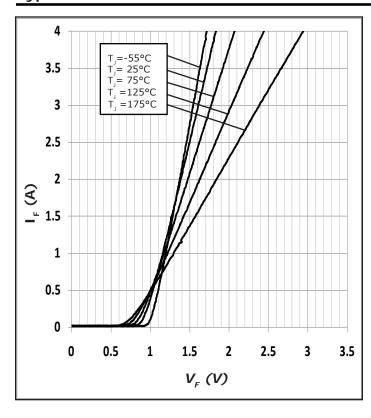
TO-220-2

Part Number	Package	Marking	
C4D02120A	TO-220-2	C4D02120	

Maximum Ratings (T_c=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{RRM}	Repetitive Peak Reverse Voltage	1200	٧		
$V_{\scriptscriptstyle RSM}$	Surge Peak Reverse Voltage	1300	V		
V_R	DC Peak Reverse Voltage	1200	V		
$I_{_{\rm F}}$	Continuous Forward Current	10 5 2	А	T _c =25°C T _c =135°C T _c =165°C	
\mathbf{I}_{FRM}	Repetitive Peak Forward Surge Current	13 8.4	А	T_c =25°C, t_p =10 ms, Half Sine Pulse T_c =110°C, t_p =10 ms, Half Sine Pulse	
\mathbf{I}_{FSM}	Non-Repetitive Forward Surge Current	19 16.5	Α	T_c =25°C, t_p =10 ms, Half Sine Pulse T_c =110°C, t_p =10 ms, Half Sine Pulse	
$\mathbf{I}_{\text{F,Max}}$	Non-Repetitive Peak Forward Current	200 160	А	T_c =25°C, t_p =10 μ s, Pulse T_c =110°C, t_p =10 μ s, Pulse	
P _{tot}	Power Dissipation	60 26	W	T _c =25°C T _c =110°C	
Т	Operating Junction Range	-55 to +175	°C		
T_{stg}	Storage Temperature Range	-55 to +135	°C		
	TO-220 Mounting Torque	1 8.8	Nm lbf-in	M3 Screw 6-32 Screw	

Electrical Characteristics


Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.4 1.9	1.8 3	V	$I_F = 2 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 2 \text{ A } T_J = 175^{\circ}\text{C}$	
I_R	Reverse Current	10 40	50 150	μΑ	V _R = 1200 V T _J =25°C V _R = 1200 V T _J =175°C	
Q _c	Total Capacitive Charge	11		nC	$V_R = 800 \text{ V, } I_F = 2A$ $di/dt = 200 \text{ A/}\mu\text{s}$ $T_J = 25^{\circ}\text{C}$	
С	Total Capacitance	167 11 8		pF	V _R = 0 V, T _J = 25°C, f = 1 MHz V _R = 400 V, T _J = 25°C, f = 1 MHz V _R = 800 V, T _J = 25°C, f = 1 MHz	

Note:

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	2.5		°C/W		

Typical Performance

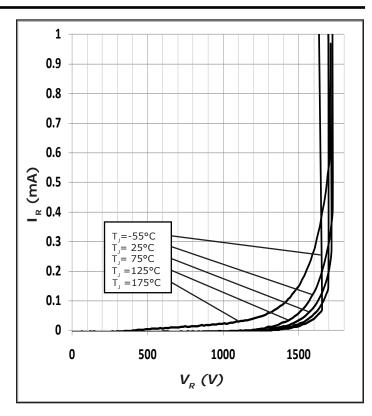
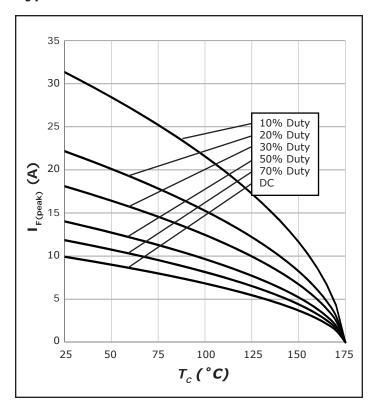



Figure 2. Reverse Characteristics

^{1.} This is a majority carrier diode, so there is no reverse recovery charge.

Typical Performance

 P_{Tot} (W) T_c (°C)

Figure 3. Current Derating

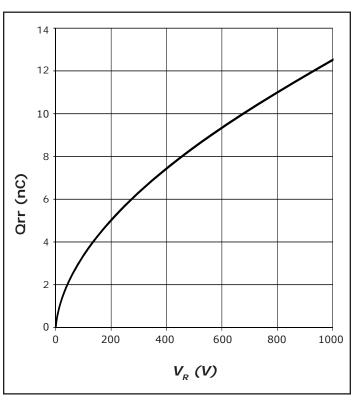


Figure 5. Recovery Charge vs. Reverse Voltage

Figure 4. Power Derating

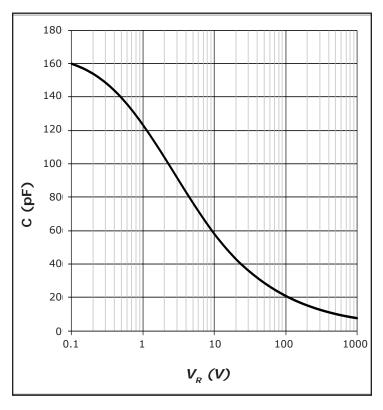
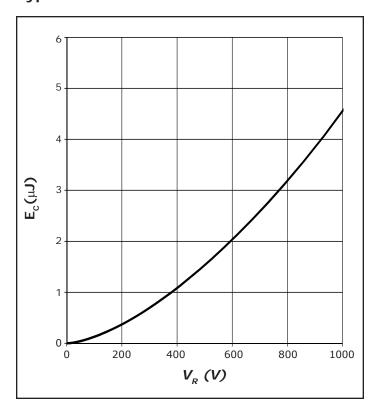
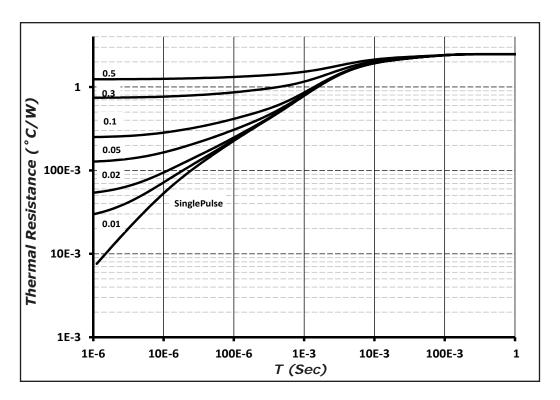



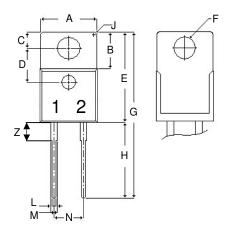
Figure 6. Capacitance vs. Reverse Voltage

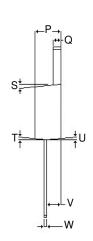

Typical Performance

 $\underbrace{\mathbf{Z}}_{\mathbf{L}} = 100$ $\underbrace{\mathbf{T}_{\mathbf{J}} = 25^{\circ}\mathbf{C}}_{\mathbf{T}_{\mathbf{J}} = 110^{\circ}\mathbf{C}} = 110^{\circ}\mathbf{C}$ $\underbrace{\mathbf{t}_{\rho} (\mathbf{s})}_{\mathbf{L}} = \mathbf{L}_{\mathbf{L}} = \mathbf{L}_{\mathbf{L}}$

Figure 7. Typical Capacitance Stored Energy

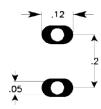
Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)


1000


Figure 9. Transient Thermal Impedance

Package Dimensions

Package TO-220-2



	POS	Inc	hes	Millimeters		
	PUS	Min	Max	Min	Max	
	А	.381	.410	9.677	10.414	
	В	.235	.255	5.969	6.477	
	С	.100	.120	2.540	3.048	
	D	.223	.337	5.664	8.560	
	E	.590	.615	14.986	15.621	
(F	.143	.153	3.632	3.886	
	G	1.105	1.147	28.067	29.134	
	Н	.500	.550	12.700	13.970	
	J	R 0.	197	R 0.197		
	L	.025	.036	.635	.914	
	М	.045	.055	1.143	1.397	
	N	.195	.205	4.953	5.207	
	Р	.165	.185	4.191	4.699	
	Q	.048	.054	1.219	1.372	
	S	3°	6°	3°	6°	
	Т	3°	6°	3°	6°	
	U	3°	6°	3°	6°	
	V	.094	.110	2.388	2.794	
	W	.014	.025	.356	.635	
	Х	3°	5.5°	3°	5.5°	
	Υ	.385	.410	9.779	10.414	
	z	.130	.150	3.302	3.810	
	NOTE:	•				

NOTE:

 Dimension L, M, W apply for Solder Dip Finish

Recommended Solder Pad Layout

TO-220-2

Part Number	Package	Marking		
C4D02120A	TO-220-2	C4D02120		

Note: Recommended soldering profiles can be found in the applications note here: http://www.cree.com/power_app_notes/soldering

Diode Model

$$\begin{array}{c|c} - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & &$$

$$V_{fT} = V_T + If * R_T$$

$$V_T = 0.9592 + (T_J^* -1.20^*10^{-3})$$

 $R_T = 0.1673 + (T_J^* 2.10^*10^{-3})$

Note: T_J = Diode Junction Temperature In Degrees Celsius

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.